USN			10AE56
		Fifth Semester B.E. Degree Examination, Dec.2014/Jan.20	15
: h. d?		Aircraft Structures – I	N
1	at .	3 hrs. Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.	.92
AN.	ne: .	3 hrs. Max. I	Marks 100
*		Note: Answer any FIVE full questions, selecting	······
		atleast TWO questions from each part.	0'
		IANI – A	
1	a.	Derive expression for incremental load factor due to gust, considering change i	
		wing and tail plane?	(08 Marks)
		What are various loads experienced by aircraft? Explain in brief.	(06 Marks)
	c.	The wing of a politary aircraft has a maximum lift co-efficient of 1.25 and a	n area 16m².
		The maximum manager load factor is 6.0. If the weight of the aircraft is 50k	
		the angle of bank required at a speed of 180m/s. Also, calculate the rac	
		(Take $\rho = 1.223 \text{ kg/m}^3$).	(06 Marks)
2	a.	Give a broad classification of materials and factors to be considered wh	ila abaaaiaa
2	a.	materials for aircraft application.	
	h	Explain advantages and disadvantages of α and β titanium alloys.	(06 Marks)
	c.	How composites are classified on the basis of matrix materials? Explain.	(06 Marks)
	U.	Trow composites are classified on the says of matrix materials? Explain.	(08 Marks)
3	a.	Define fatigue. Explain in brief various stages in fatigue failure.	(08 Marks)
J		What are elastic constants? Explain them.	(06 Marks)
		Explain the failure criteria based on soderberg line equation.	(06 Marks)
			(OU IVIAINS)
4	a.	The truss shown in part of an airplane's internal structure. Determine the ax	ial forces in
		members BC, BD and BE.	(12 Marks)
		18KN [14KN	(== ::===;
		A B O O O O O O	
		300WM	

Derive three moment equation for a continuous beam.

(08 Marks)

PART - B

- Determine the deflection of a point on a frame-work by unit load method. 5 a.
 - (12 Marks) Explain Maxwell's reciprocal theorem. (08 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any eyzaling of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fig.Q.4(a)

- Derive an expression for Euler's crippling load for a column with both ends fixed. (10 Marks) (10 Marks)
 - Derive south well plot equation.
- Derive equations of equilibrium for the stress acting on a 3-dimensional element of an elastic material.
 - The state of strain at a point is given by: $\epsilon_x = 0.001$, $\epsilon_y = -0.003$, $\epsilon_z = \gamma_{xy} = 0$, $\gamma_{xz} = 0.004$, $\gamma_{yz} = 0.001$. Determine the stress tensor at this point. (Take E = 210×10^6 kN/m² Poisson's ratio = 0.28). Also find Lame's constant. ratio = 0.28). Also find Lame's constant.
- Derive equation for failure condition based on maximum strain energy theory. Also explain
 - A mild-steel shaft of 60mm diameter is subjected to a bending moment of 25×10^5 N-mm and Torque X. If the yield point of steel in tension is 230 N/mm². Find maximum torque as per maximum stress theory. Take factor of safety as 1.5.

Highly confidential decimal and the second s